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Abstract This paper presents simple weighted and fully augmented weighted esti-
mators for the additive hazards model with missing covariates when they are missing
at random. The additive hazards model estimates the difference in hazards and has an
intuitive biological interpretation. The proposed weighted estimators for the additive
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hazards model use incomplete data nonparametrically and have close-form expres-
sions. We show that they are consistent and asymptotically normal, and are more
efficient than the simple weighted estimator which only uses the complete data. We
illustrate their finite-sample performance through simulation studies and an applica-
tion to study the progression from mild cognitive impairment to dementia using data
from the Alzheimer’s Disease Neuroimaging Initiative as well as an application to the
mouse leukemia study.

Keywords Kernel smoother ·Missing covariates ·Nonparametric method ·Weighted
estimators · Weighted estimating equations

1 Introduction

For survival (time-to-event) data, a commonly used model is the Cox proportional
hazards (PH) model (Cox 1972) pertaining to the relative risk of certain covariates.
Another well-known but less used method is the additive hazards model (Aalen 1980;
Cox and Oaks 1984; Thomas 1986; Breslow and Day 1987, p. 182). Unlike the Cox
PH model, the additive hazards model does not assume proportional hazards, and it
estimates the difference in hazards instead of the hazard ratios. Although the Cox PH
model is very popular, it is desirable to utilize the additive hazards model for several
reasons as discussed in Lin and Ying (1997). When describing the covariate–disease
association, the hazard difference is complementary to and may be more relevant to
public health than the hazard ratio because it translates directly into the number of
events (e.g., disease cases) for the covariate. In practice, the additive hazards model
may fit certain type of data better than the Cox PH model (Breslow and Day 1987),
and it provides a simple structure for studying frailty models and interval-censored
data (Lin and Ying 1997). Therefore, when the difference in disease risk due to the
covariates is of primary interest or the PH assumption does not hold, the additive
hazards model may be more proper.

The additive hazards model assumes that the conditional hazard function given a
set of covariates is the sum of, rather than the product of, a baseline hazard function
and a linear regression function of the covariates. Specifically, the hazard function for
the failure time T associated with a column vector of covariates Z has the form

λ(t |Z) = λ0(t) + βT Z , (1)

where λ0(t) is an unspecified baseline hazard function, and β is a column vector of
regression parameters. The additive hazards model has an intuitive biological inter-
pretation. When all covariates are fully observed, Lin and Ying (1994) proposed a
simple semiparametric estimating function for β which generates a consistent and
asymptotically normally distributed estimator with an explicit form.

Biomedical studies with survival outcomes frequently have missing covariates and
some components of Z are not observed for all study subjects. Discarding the subjects
with missing covariates may lead to either biased or inefficient estimates when the
missing-data mechanism depends on the outcomes. Assuming missing at random
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(MAR) (Little and Rubin 1987), i.e., the missing-data mechanism (or the selection
probability) depends on the observed data but not on the missing data, Qi et al. (2005)
proposed the simpleweighted estimating equations using nonparametrically estimated
selection probabilities and the kernel-assisted fully augmented weighted estimating
equations for the Cox PHmodels. Their resultant fully augmented estimators (FAWEs)
have the double-robustness property and also improve efficiency compared to most
of the simple weighted estimators (SWEs), and the SWEs with selection probability
estimated using all observed data are asymptotically equivalent to the FAWEs. For two-
stage studies, Mark and Katki (2006) incorporated auxiliary information as weights
and used model based approaches for estimating the sampling probabilities, which
was further extended to general semiparametric models by several authors including
Breslow et al. (2009) and Sun et al. (2017). For the additive hazards models, Kulich
and Lin (2000) proposed a simple weighted estimator for case-cohort studies (Prentice
1986), a special case of MAR where all cases (failures) and a subset of controls
(censored subjects) are selected and have complete observations.

In this paper, we propose the simple weighted and fully augmented weighted esti-
mating equations for the additive hazards models with missing covariates under the
MAR assumption. An advantage is that the SWEs and FAWEs for the additive haz-
ards model take explicit forms. We also propose to estimate the selection probabilities
in the simple weighted and fully augmented weighted estimating equations, and the
unknown conditional expectations in the fully augmented weighted estimating equa-
tions using the nonparametric kernel smoothing techniques similar to those used by
Wang et al. (1997),Wang andWang (2001) and Qi et al. (2005). Under certain regular-
ity conditions, the resultant SWEs and FAWEs are consistent and asymptotical normal.
We examine the finite-sample performance of these estimators through a simulation
study and also demonstrate these methods using an Alzheimer’s Disease Neuroimag-
ing Initiative data set (adni.loni.usc.edu) and the data from the mouse leukemia study
(Kalbfleisch and Prentice 1980).

The remainder of the paper is organized as follows: Sect. 2 presents the SWEs
and the FAWEs and their asymptotic properties as well as the discussions of the
relationships between the SWEs and the FAWEs. Section 3 examines some properties
of the proposed estimators through a simulation study, and illustrates the proposed
methods with real examples using the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) data and the mouse leukemia data. Section 4 provides further discussions and
some practical recommendations. The regularity conditions are given in Appendix,
and the proofs of the theorems are given in online Appendix S1.

2 Method

2.1 Simple weighted estimating equations

In the additive hazardsmodel (1), letT ,C and X = min(T,C)be the failure, censoring,
and observed time for a subject, respectively. The failure indicator δ = I (T ≤ C)

is 1 if the subject experiences a failure and δ = 0 if censored. Let Z denote a set of
time-independent covariates. We assume that, given Z , T and C are independent, and
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all study subjects have X, δ observed. Suppose some elements of Z , denoted by Zc,
are observed for all n study subjects, while other elements may be missing for some
subjects, denoted by Zm . Let the selection indicator V equal 1 if Zm is available, and
0 otherwise. Then the selection probability π is defined by pr(V = 1|X, δ, Zc, Zm),
equal to pr(V = 1|X, δ, Zc) under the MAR assumption.

Let N (t) = δ I (X ≤ t) andY (t) = I (X ≥ t) be the counting process and the at-risk
process, respectively, corresponding to (X, δ). Let (Xi , δi , Zm

i , Zc
i , Vi ), i = 1, . . . , n,

be independent and identically distributed copies of (X, δ, Zm, Zc, V ). When the
selection probability π is known, a simple weighted estimating function can have the
following form:

Usw(β, π) =
n∑

i=1

Vi
πi

∫ τ

0

{
Zi − Z̄sw(π, t)

} {
dNi (t) − Yi (t)β

T Zidt
}

(2)

where Z̄sw(π, t) = ∑n
j=1(Vj/π j )Y j (t)Z j/

∑n
l=1(Vl/πl)Yl(t) and τ = sup{t :

pr(Y (t) = 1) > 0}. This estimating function can be regarded as a weighted complete-
data pseudolikelihood score vector. By solving equation Usw(β, π) = 0, we obtain
the estimator

β̂sw(π) =
[

n∑

i=1

Vi
πi

∫ τ

0
{Zi − Z̄sw(π, t)}⊗2Yi (t)dt

]−1 [
n∑

i=1

Vi
πi

∫ τ

0
{Zi

−Z̄sw(π, t)}dNi (t)

]
. (3)

In a case–cohort study (Prentice 1986)with Bernoulli sampling (Kulich and Lin 2000),
i.e., V = 1 for all failure events (cases) and V = 1 with probability π for censored
observations (controls), the SWE is the same as the estimator proposed by Kulich and
Lin (2000).

To study rigorously the asymptotic properties of β̂sw(π), we impose regular-
ity conditions (a1) to (a5) given in Appendix. Since π is a function of X, δ, Zc

and may not be predictable, the techniques of Andersen and Gill (1982) cannot
be directly applied to Usw(β, π). We employ modern empirical process theory to
establish the consistency and asymptotic normality of β̂sw(π), and further intro-
duce the following notation to present the asymptotic results in Theorem 1. Define,
for k = 0, 1, S(k)

sw (π, t) = n−1 ∑n
j=1(Vj/π j )Z

⊗k
j Y j (t), s(k)(t) = E{Z⊗kY (t)},

a⊗0 = I , and a⊗1 = a. Let Mi (t) = Ni (t) − ∫ t
0 Yi (s)λ0(s)ds − ∫ t

0 βT ZiYi (s)ds be
the counting process martingale for the failure process, and e(t) = s(1)(t)/s(0)(t). Let
MZ̃ = ∫ τ

0 {Z − e(t)}dM(t) be the martingale transformation with mean E{MZ̃ } = 0
and variance �A = E{M⊗2

Z̃
}, where a⊗2 = aaT .

Theorem 1 Under the regularity conditions (a1) to (a5) given in Appendix, β̂sw(π)

is consistent for the true parameter β, and n1/2(β̂sw(π) − β) converges to
N (0, �−1�sw(π)�−1) in distribution, where � = E[∫ τ

0 {Z − e(t)}⊗2Y (t)dt] and
�sw(π) = E{π−1M⊗2

Z̃
} = �A + E{(π−1 − 1)M⊗2

Z̃
}.
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The first term �A of �sw(π) is the asymptotic variance of the full-cohort pseudo-
score estimator, while the second term quantifies the efficiency loss due to the
missing covariates. The variance �sw(π) can be estimated consistently by �̂sw(π) =
n−1 ∑n

i=1(Viπ
−2
i )M̂⊗2

Z̃ ,i
, where

M̂Z̃ ,i =
∫ τ

0

{
Zi − Z̄sw(π, t)

} {
dNi (t) − Yi (t)Z

T β̂sw(π)dt − Yi (t)d�̂
sw
0 (t)

}
,

�̂sw
0 (t) = 1

n

∫ t

0

∑n
i=1(Vi/πi )dNi (s)

S(0)
sw (π, s)

−
∫ t

0
β̂sw(π)T Z̄sw(π, s)ds

and � can be estimated consistently by �̂(π) = n−1 ∑n
i=1(Vi/πi )

∫ τ

0 {Zi −
Z̄sw(π, t)}⊗2Yi (t)dt .

When the true selection probability π is used, β̂sw(π) is obtained excluding all
incomplete observations, so it may not be efficient. To improve efficiency, an estimate
of π can be used in the estimating function. We implement nonparametric methods to
estimateπ using all observed data, allowing incomplete observations to also contribute
to the calculation of β̂sw(π). Let W denote the variables used to estimate π . When
W is discrete, π can be estimated by the empirical proportion based on the observed
data,

π̂(w) =
∑n

i=1 Vi I (Wi = w)∑n
j=1 I (Wj = w)

. (4)

If W has d number of continuous components, π can be estimated consistently by
nonparametric kernel smoothers. Let K be a r th-order (r > d) kernel function with
bounded support, with

∫
K (u)du = 1,

∫
umK (u)du = 0 for m = 1, . . . , (r − 1),∫

ur K (u)du �= 0, and
∫
K (u)2du < ∞. Let Kh(·) = K (·/h), and h is the smoothing

parameter, also called the bandwidth. We estimate π(w) using the Nadaraya–Watson
(Nadaraya 1964; Watson 1964) estimator

π̂(w) =
∑n

i=1 Vi Kh(w − Wi )∑n
j=1 Kh(w − Wj )

. (5)

The kernel function K usually has little effect on π̂ , and thus on the estimator of β,
while h affects the behavior of the estimator both theoretically and practically. We
assume h satisfies nh2d → ∞ and nh2r → 0, as n → ∞. Similar to Qi et al. (2005)
andWang andWang (2001), we may choose h = O(n−1/p) for some integer p > 2d,
and the smallest even integer for r such that r ≥ p − d. For example, when d = 2, p
and r can take values of 5 and 4, respectively.

Plugging in π̂ in the simpleweighted estimating function (2) results in the following
estimating function:

Usw(β, π̂) =
n∑

i=1

Vi
π̂i

∫ τ

0

{
Zi − Z̄sw(π̂, t)

} {
dNi (t) − Yi (t)β

T Zidt
}

.
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SolvingUsw(β, π̂) = 0, we obtain β̂sw(π̂)with the same closed form of (3) replac-
ing π with π̂ . The consistency and asymptotic normality of β̂sw(π̂) were established
in the online supplementary material, with more imposed regularity conditions (a6) to
(a10) in Appendix, and the results are stated in the following Theorem 2.

Theorem 2 Under the regularity conditions (a1) to (a10), given in Appendix,
β̂sw(π̂) is consistent for the true parameter β, and n1/2(β̂sw(π̂) − β) converges
to N (0, �−1�π̂

sw(π)�−1) in probability, with �π̂
sw(π) = �A + �∗

sw(π), where
�∗

sw(π) = E[(π−1 − 1){MZ̃ − E(MZ̃ |W )}⊗2] = E{(π−1 − 1)var(MZ̃ |W )}.

Theorem 2 shows that with the consistent estimator π̂ in (4) or (5), β̂sw(π̂) is
consistent for β, and has a smaller asymptotic variance than β̂sw(π) because their
asymptotic variances have the same first term �A and the second term in �sw(π) is
E{(π−1 −1)M⊗2

Z̃
}, greater than E[(π−1 −1){MZ̃ − E(MZ̃ |W )}⊗2], the second term

in �π̂
sw(π). Hence using the nonparametrically estimated selection probability in the

simple weighted estimating equation allows more effective use of the available data
and improves the efficiency of the SWE with π .

Also var(MZ̃ |W ) is non-increasing over the dimension ofW , so the more variables
are used to estimate π , the smaller is var(MZ̃ |W ) and the more efficient is β̂sw(π̂).
This suggests that estimating selection probabilities using additional variables besides
the variables on which they depend may lead to further efficiency gains for the SWEs.
The variance �π̂

sw(π) can be estimated consistently by estimating �A and �∗
sw(π)

consistently. Let M0
Z̃

= E(MZ̃ |W ). Estimate d�0(t) and MZ̃ , respectively, by

d�̂sw
0 (π̂, t) = 1

n

∑n
i=1(Vi/π̂i ) {dNi (t) − Yi (t)β̂T

sw(π̂)Zidt}
S(0)
sw (π̂, t)

,

M̂Z̃ =
∫ τ

0

{
Z − Z̄sw(π̂, t)

} {
dN (t) − Y (t)d�̂sw

0 (t, π̂) − β̂sw(π̂)T ZY (t)dt
}
.

We estimate �A by

�̂A = n−1
n∑

i=1

Vi
π̂i

∫ τ

0
{Zi − Z̄sw(π̂, t)}⊗2dNi (t)

and �∗
sw(π) by

�̂∗
sw(π) = 1

n

n∑

i=1

Vi (1 − π̂i )

π̂2
i

(
M̂Z̃ ,i − M̂0

Z̃ ,i

)⊗2
, (6)

where M̂0
Z̃ ,i

is obtained by the Nadaraya–Watson estimator (12) of Sect. 2.2.
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2.2 Fully augmented weighted estimating equations

Wepropose the following fully augmented estimating function for the additive hazards
model,

Ufaw(β, π) =
n∑

i=1

Vi
πi

∫ τ

0

{
Zi − Z̄faw(π, E, t)}{dNi (t) − βT ZiYi (t)dt

}

+
n∑

i=1

AF
i (β, π), (7)

where Z̄faw(π, E, t) = S(1)
faw(π, E, t)/S(0)

faw(π, E, t), and let W = (X, δ, Zc),

AF
i (β, π) =

(
1 − Vi

πi

) ∫ τ

0
(E[Zi {dNi (t) − βT ZiYi (t)dt}|Wi ]

− Z̄faw(π, E, t)E[{dNi (t) − βT ZiYi (t)dt}|Wi ]),

and for k = 0, 1,

S(k)
faw(π, E, t) = 1

n

n∑

j=1

Vj

π j
Y j (t)Z

⊗k
j + 1

n

n∑

j=1

(
1 − Vj

π j

)
Y j (t)E

(
Z⊗k
j |Wj

)
. (8)

When k = 0, S(0)
faw(π, E, t) = ∑n

j=1 Y j (t)/n.
The fully augmented weighted estimating function Ufaw(β, π) uses incomplete

observations through the augmented averages S(1)
faw(π, E, t) and S(0)

faw(π, E, t), and
the augmentation term AF

i (β, π). The resulting fully augmented weighted estimator
(FAWE) possesses the so-called double-robust property, i.e., the estimator is consistent
if either the missing-data mechanism (i.e., the selection probability) or the distribution
of themissing covariates given the observed data ismodeled correctly (Wang andWang
2001; Qi et al. 2005). Solving Ufaw(β, π) = 0, we can obtain the FAWE explicitly:

β̂faw(π, E) =
{

n∑

i=1

[
Vi
πi

∫ τ

0
Yi (t)Z̄

⊗2
i dt

+
(
1 − Vi

πi

)∫ τ

0
Yi (t)E

(
Z̄⊗2
i |W̃

)
dt

]}−1 n∑

i=1

[
Vi
πi

∫ τ

0
Z̄idNi (t)

+
(
1 − Vi

πi

) ∫ τ

0
E(Z̄i |W̃ )dNi (t)

]
,

(9)

where Z̄i = Zi − Z̄faw(π, E, t) and W̃ = (W1, . . . ,Wn).
The conditional expectations E(Z̄⊗2

i |W̃ ) and E(Z̄i |W̃ ) in Eq. (9) are unknown
since they contain unknown quantities E(Z⊗2

i |Wi ) and E(Zi |Wi ). Specifically,
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E(Z̄⊗2
i |W̃ ) = E(Z⊗2

i |Wi ) − 2E(Zi |Wi )Z̄faw(π, E, t)T + Z̄faw(π, E, t)⊗2, and

E(Z̄i |W̃ ) = E(Zi |Wi ) − Z̄faw(π, E, t). The denominator of Z̄faw(π, E, t), S(0)
faw

(π, E, t) does not contain unknown quantities, while the nominator of Z̄faw(π, E, t),
S(1)
faw(π, E, t), involves E(Zi |Wi ), i = 1, . . . , n, as seen in Eq. (8). So once
E(Z⊗2

i |Wi ) and E(Zi |Wi ) are estimated, we can estimate E(Z̄⊗2
i |W̃ ) and E(Z̄i |W̃ )

as well as Z̄faw(π, E, t) in Eq. (9), and generate a FAWE β̂faw(π, Ê). Furthermore,
since Z = ((Zm)T , (Zc)T )T and Zc is known for all subjects, we have

E(Z |W ) =
(
E(Zm |W )

Zc

)
, (10)

and

E(Z⊗2|W ) =
(

E[(Zm)⊗2|W ] E(Zm |W )(Zc)T

Zc(E(Zm |W ))T (Zc)⊗2

)
. (11)

Hence we can use the observed values for Zc and only need to estimate the unknown
quantities E[(Zm)⊗2|W ] and E(Zm |W ) in Eqs. (10) and (11). We propose to use
a nonparametric kernel-assisted method to estimate E[(Zm)⊗2|W ] and E(Zm |W ).
Specifically, let ζ denote Zm or (Zm)⊗2, then we can estimate E(ζ |W ) using the
Nadaraya–Watson (Nadaraya 1964; Watson 1964) estimator based on the complete
observations.

Let φ(w) = E(ζ |w). Assuming φ(w) is a smooth function with r continuous and
bounded partial derivatives with respect to the continuous components ofW a.e., then
a Nadaraya–Watson estimator of φ(w) is

φ̂(w) =
∑n

i=1 Viζi Kh(w − Wi )∑n
j=1 Vj Kh(w − Wj )

, (12)

where K is an r th-order kernel function as defined in Sect. 2.1 and h is a smoothing
parameter.

A step-by-step algorithm for obtaining the FAWEs using Eq. (9) can be summarized
as below:

1. Apply the kernel smoother (12) to obtain the estimated E[(Zm)⊗2|W )] and
E(Zm |W ), i.e., Ê[(Zm)⊗2|W )] and Ê(Zm |W ), respectively. When there are both
discrete and continuous components inW , first stratify by the discrete components,
then at each level, implement the kernel smoothers.

2. Calculate S(1)
faw(π, E, t) using Eq. (8). For the augmented term

∑n
j=1(1 −

Vj/π j )Y j (t)E(Z j |Wj )/n, plug in the observed values of Zc and Ê(Zm |W ). Cal-

culate S(0)
faw(π, E, t) = ∑n

j=1 Y j (t)/n and obtain Z̄faw(π, E, t) = S(1)
faw(π, E, t)/

S(0)
faw(π, E, t).

3. Obtain an FAWE β̂faw(π, Ê) using Eq. (9). For the augmented terms in both
the nominator and the denominator, plug in the observed values of Zc, and
Ê[(Zm)⊗2|W ], Ê(Zm |W ) and the estimated Z̄faw(π, E, t).
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When the selection probability π is unknown, π̂(w) in (5) with w = (x, δ, zc) can
substitute for π in Eq. (7), resulting in the FAWE β̂faw(π̂, Ê). When both selection
probabilities and conditional expectations are estimated nonparametrically, differ-
ent kernel functions may be used respectively. For simplicity, we used the same
kernel function for theoretical derivations and simulation studies. The following the-
orems present the asymptotical properties of β̂faw(π, E), β̂faw(π̂, E), β̂faw(π, Ê) and
β̂faw(π̂, Ê).

Theorem 3 Under the regularity conditions (a1) to (a5) given inAppendix, β̂faw(π, E)

is consistent for the true parameter β, and n1/2(β̂faw(π, E) − β) converges to
N (0, �−1�faw(π)�−1) in distribution, with �faw(π) = �A + �∗

faw(π), where
�∗

faw(π) = E{(π−1 − 1)var(MZ̃ |W )}.
Theorem 4 Under the regularity conditions (a1) to (a10) given in Appendix,
β̂faw(π̂, E), β̂faw(π, Ê), and β̂faw(π̂, Ê) are consistent for the true parameter β.
Moreover, n1/2(β̂faw(π̂, E) − β), n1/2(β̂faw(π, Ê) − β) and n1/2(β̂faw(π̂, Ê) − β)

are asymptotically normal with mean 0 and variance matrix �−1�faw(π)�−1.

All the FAWEs have the same asymptotic distribution, indicating that the asymp-
totic properties of the FAWEs are not affected by the nonparametric estimation of the
selection probabilities and the conditional expectations. The FAWEs aremore efficient
than the SWE with true π and the SWEs with π̂ except that the SWE with nonpara-
metric π̂(X, δ, Zc) has the same asymptotic distribution as all the FAWEs. When Zm

can be exactly specified by W = (X, δ, Zc), then the martingale transformation MZ̃
is constant given W , so var(MZ̃ |W ) = 0, and �faw(π) = �π̂

sw(π) = �A. Therefore,
the SWE with π̂(X, δ, Zc) and the kernel-assisted FAWEs achieve the efficiency of
the estimator based on the full-cohort data in this special situation.

Consistent estimators of �faw(π) can be obtained similarly to those of the �π̂
sw(π).

For illustration, we demonstrate how to estimate the variance�faw(π) for β̂faw(π̂, Ê).
Set

d�̂faw
0 (t, π̂) =

∑n
i=1 dNi (t)∑n
j=1 Y j (t)

− β̂faw(π̂, Ê)T Z̄faw(π̂, Ê, t)dt

and

M̂Z̃ =
∫ τ

0

{
Z − Z̄faw(π̂, Ê, t)dt

} {
dN (t) − Y (t)β̂T

faw(π̂, Ê)Zdt

−Yi (t)d�̂
faw
0 (t, π̂)

}

to be the estimators of d�0(t) and MZ̃ , respectively. Then �A and �∗
faw(π) are esti-

mated respectively by

�̂A = n−1
n∑

i=1

Vi
π̂i

∫ τ

0

{
Zi − Z̄faw(π̂, Ê, t)

}⊗2
dNi (t)
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and

�̂∗
faw(π) = 1

n

∑

i=1

Vi
(
1 − π̂i

)

π̂2
i

(
M̂Z̃ ,i − M̂0

Z̃ ,i

)⊗2
,

where M̂0
Z̃ ,i

is obtained using the Nadaraya–Watson estimator in (12).

3 Numerical studies

3.1 Simulation study

A comprehensive simulation study was conducted to examine the moderate sample
size performance of the SWEs and the kernel-assisted FAWEs and to compare their
performance with that of the full-cohort (i.e., Lin and Ying’s estimator 1994) and
complete-case analyses. In all simulations, 1000 datasets were generated and either
n = 250 or 500 subjects were used. In the first three simulation settings, we considered
two independent covariates, a missing covariate Zm and an observed covariate Zc. In
the first setting, a binary variable Zc was generated from the Bernoulli distribution
with probability 0.5, and Zm followed a standard normal distribution. We generated
the failure time using λ(t; Zm, Zc) = 1.5 − 0.5Zm + 1.0Zc, and the censoring time
based on the exponential distribution with mean 1.5, resulting in about 45% censored
observations. The first setting mimicked the case-cohort (Prentice 1986) sampling
scheme used in Kulich and Lin (2000), with π(δ) = δ + 0.5(1 − δ), so that we can
compare our estimators with theirs.

In the second setting, π(δ) = 0.7δ + 0.5(1 − δ), resulting in an overall missing
rate of 39%. We considered correlated Zm and Zc in this setting. Specifically, Zc ∼
Bernoulli(0.5), Zm = Zc − 0.5+ ε, where ε ∼ N (0, 1), and the correlation between
Zm and Zc is about 0.44. In the third setting, both Zm and Zc were generated from
a Bernoulli distribution with probability 0.5. The hazard function λ(t; Zm, Zc) =
2t + 0.8Zm + 0.4Zc was used to generate the failure time and the censoring time was
generated from the exponential distribution withmean 1, yielding about 44% censored
observations. The selection probability was π(δ, X) = 1/{1+ exp(1.5− 2.5δ − X)},
and about 44% observations had missing Zm . In the fourth setting, we considered
two missing covariates, Zm1 ∼ N(0,1), Zm2 ∼ Bernoulli(0.5), Zc ∼ Bernoulli(0.5),
β = (0.5, 1.0,− 0.5) and the baseline hazard function equal to 1.0. The censoring
time was generated from exponential distribution with mean 0.5, yielding about 49%
censored observations. The selection probability π(δ) = 0.6δ + 0.4(1− δ), resulting
in 50% observations with Zm1 and Zm2 missing.

The theoretical standard errors for the SWEs, the kernel-assisted FAWEs, were
obtained from the corresponding variance estimators discussed in Sect. 2. The condi-
tional expectations in the FAWEs were estimated by the Nadaraya–Watson estimators
with the smoothing parameter h = 4σWn−1/3, where σW was the standard deviation
of observed times stratified by δ and Zc.

We obtain the following measures for all the estimators. Bias is the average differ-
ence between a parameter and its estimate. Relative bias is the result of bias divided
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by the true β value. Sample standard error (SE) equals the square root of the sam-
ple variance of the 1000 parameter estimates. Mean theoretical standard error (SE) is
the average of the one thousand standard error estimates. And 95% confidence inter-
val coverage probabilities (CP) were calculated using the theoretical standard error
estimates.

Table 1 presents the results from the first simulation setting. All estimated selection
probabilities are consistent for the true π . There is no evidence of bias in any of
the estimates β̂ except for the complete-case analysis, due to the strong association
between the selection probability and the outcome variable δ. All FAWEs had smaller
bias than other estimators for both β1 and β2. The sample standard errors are generally
in good agreement with the corresponding mean theoretical standard errors. As the
cohort size increased from 250 to 500, the sample andmean theoretical standard errors
for β̂1 became closer for all the weighted estimators, and the standard errors of SWE
(π̂(X, δ, Zc)) became closer to those of the FAWEs.

In addition, the estimator of Kulich and Lin (2000) and SWE (π(δ)) have the
same point estimates because they share the same estimating equations. All weighted
estimators have similar standard errors for β̂1, indicating that compared to the SWE
with trueπ , using partially incomplete data in estimation did not improve the efficiency
of estimates of β1. However, compared to SWE(π(δ)) the sample standard error for
β̂2 was reduced by using the SWEs with π̂(δ, Zc) (e.g., about 9% when n = 250) and
π̂(X, δ, Zc) (about 11% when n = 250) and as well as all the kernel-assisted FAWEs
(about 16% when n = 250). So the efficiency of β̂2 was improved by including the
incomplete data in estimation. In particular, all kernel-assisted FAWEs almost achieved
the full-cohort efficiency for estimating β2. For n = 250, the ratios of sample and
theoretical standard errors between the full-cohort estimator and the FAWEs were
96%. When cohort size was 500, the ratio was about 98% if calculated from sample
standard errors, and about 97% if from theoretical standard errors.

The results from the second simulation setting, where Zm and Zc are correlated,
show similar patterns as those from the first setting and are provided in Table 2. The
bias of complete-case method was smaller in this setting because the missing-data
mechanism was less dependent on the censoring indicator δ. (Selection probability
was 70% for cases and 50% for controls.)

Table 3 displays the results from the third simulation setting where both Zm and
Zc were binary and the selection probability depended on both the censoring indicator
and the survival time. The results from this setting show similar patterns as those from
the first two settings, except that the sample and mean theoretical standard errors of
SWE(π̂(δ)) are not in good agreement with each other and its 95% confidence interval
coverage probability is low when the sample size was 250. This occurred because the
π̂ based on δ alone was inconsistent for the true π(δ, X). These issues are reduced
when the sample size increases to 500. The FAWE(π̂ (δ)), however, does not have
these issues and still performs well under both sample sizes. Because the selection
probability depended heavily on both survival time and censoring indicator, the bias
for estimates from the complete-case analysis was elevated to about 15% of the true
parameter value.
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Weighted estimating equations for additive hazards models

The results from the fourth setting with a mixture of continuous and binary missing
covariates, Zm1 and Zm2, and a binary Zc, showed similar patterns as those from the
first three settings (Table 4).

In summary, the results from the simulation studies suggest that (1) the kernel-
assisted FAWEs and most of the SWEs with nonparametric π̂ are more efficient than
the SWE with true π ; (2) the SWEs with π̂ are not as efficient as the kernel-assisted
FAWEs most of the time, and the efficiency of SWE(π̂(X, δ, Zc)), the most efficient
among all SWEs, approaches to those of the FAWEs when sample size increases; (3)
the complete-case analysis generates inconsistent estimates when true π depends on
outcome variables; (4) all FAWEs and the SWEs correct such bias with true π or
consistent π̂ ; (5) an inconsistent π̂ may affect the variance estimation of the SWEs
but not of the kernel-assisted FAWEs.

3.2 Application to the Alzheimer’s Disease Neuroimaging Initiative data

We illustrate ourmethods using a data set from theAlzheimer’s DiseaseNeuroimaging
Initiative (ADNI) database, a large depository of clinical and demographic data of
Alzheimer’s disease (AD) patients, as well as their longitudinal outcome and imaging
measurements (adni.loni.usc.edu). The ADNI, led by Dr. Michael W. Weiner at VA
Medical Center and University of California San Francisco, was launched in 2003
by the National Institute on Aging, the National Institute of Biomedical Imaging
and Bioengineering, the Food and Drug Administration, pharmaceutical companies
and non-profit organizations as a public-private partnership. The ADNI had several
goals including AD pathophysiology investigation, diagnostic tool improvement and
biomarker development.

Our example involves the progression from mild cognitive impairment (MCI) to
dementia data from the first phase of ADNI (ADNI-1), where 800 patients were
enrolled from over 50 sites across the USA and Canada in 2005–2007. Patients were
advised to have office visit very six months for a period of two years, followed by a
visit after 1-year interval. Totally 382 patients hadMCI diagnosis at the initial visit and
had at least one follow-up visit. The middle point between two visits was used as the
time-to-event, as in conventional analyses of follow-up survival outcomes in practice.
Among the 382 patients, 159 developed dementia and 223 were censored. The median
follow-up time for patients without dementia diagnosis at subsequent visits was 36
months. Baseline covariates were obtained during the initial visit to address various
questions. Here we consider the association between the risk of developing dementia
fromMCI and two covariates: the APOE-e4 status, a binary variable with 1 indicating
the presence of APOE-e4 and 0 otherwise, and Abeta, a biomarker with continuous
expression levels. All patients had APOE-e4 status while the Abeta expression levels
were available only for 192 patients who consented to get the lumbar punctures done.
The standardized Abeta expression level was included in the analysis and each unit of
the standardized variable represented 50 in the original expression level. We applied
the complete-case analysis, the SWEs and the kernel-assisted FAWEs with estimated
selection probabilities to the data. Selection probabilities were estimated based on
censoring indicator δ only, observed time X and δ, and X , δ and APOE-e4 status for
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Weighted estimating equations for additive hazards models

Table 5 Analysis of the ANDI dementia data using the additive hazards model and various estimators

Method Abeta APOE-e4

Estimate SE p-value Estimate SE p-value

Complete-case −0.0055 0.0016 0.0009 0.0035 0.0047 0.46

SWE—π̂(δ)a −0.0052 0.0016 0.0009 0.0044 0.0041 0.28

SWE—π̂(δ, X) −0.0054 0.0012 < 0.0001 0.0037 0.0034 0.27

SWE—π̂(δ, X, Zc) −0.0052 0.0012 < 0.0001 0.0063 0.0041 0.13

FAWE—π̂ (δ)a −0.0053 0.0015 0.0004 0.0057 0.0037 0.12

FAWE—π̂ (δ, X) −0.0052 0.0016 0.0011 0.0058 0.0039 0.14

FAWE—π̂ (δ, X, Zc) −0.0053 0.0016 0.0008 0.0057 0.0039 0.15

a π̂ was estimated nonparametrically based on the variable in the bracket. Other π̂ was obtained on the
variables in the bracket using the Nadaraya–Watson estimator with uniform kernel and bandwidth h =
4σWn−1/3

the SWEs and the FAWEs. When including X to estimate the selection probabilities,
the Nadaraya–Watson estimator was used with the band width h = 4σWn−1/3. Con-
ditional expectations were estimated by the Nadaraya–Watson estimator (12) based
on X , δ and the APOE-e4 status.

Results in Table 5 show that the Abeta level was significantly associated with the
risk of dementia after adjusting for APOE-e4 status. For patients with the sameAPOE-
e4 status, a high Abeta expression level was associated with a lower risk of dementia.
However, APOE-e4, was not statistically significant regardless of the methods used.

3.3 Application to the mouse leukemia study

We also illustrate our methods using the data set from the mouse leukemia study
(Kalbfleisch and Prentice 1980). This study was conducted in the laboratories of Dr.
RobertNowinski of theFredHutchinsonCancerResearchCenter, Seattle,Washington,
investigating genetic and viral factors in the development of spontaneous leukemia
in mice. Totally 204 mice were followed for 2 years for mortality due to thymic or
nonthymic leukemia, or other natural causes. Two covariates, theGpd-1 phenotype and
the level of endogenous murine leukemia virus, were of interest. Almost all mice had
the level of endogenous murine leukemia virus measured. The Gpd-1 phenotype was
obtained for 100mice that survived 400 days, indicating whether the Gpd-1 phenotype
was observed on a mouse depends on its follow-up time. The MAR assumption seems
proper here since the missingness was caused by design.

Following previous publications (e.g., Wang and Chen 2001; Qi et al. 2005), we
excluded the animals with missing endogenous murine leukemia virus for computa-
tional simplicity. A total of 175 mice were analyzed in the data analysis. The virus
level was classified into two categories, with Zc = 0 if a virus level < 104 PFU/ml
and 1 otherwise.We conducted separate analyses for the death of thymic leukemia and
the death of thymic or nonthymic leukemia as the endpoint, respectively. We obtained
the estimates of regression coefficients in the AFT model using the complete-case
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Table 6 Analysis of the mouse leukemia data using the additive hazards model and various estimators

Method Gpd-1 Virus load

Estimate SE p-value Estimate SE p-value

Thymic leukemia death

Complete-case −0.0167 0.0069 0.0153 0.0072 0.0047 0.1288

SWE—π̂(δ, X) −0.0145 0.0081 0.0723 0.0173 0.0068 0.0107

SWE—π̂(δ, X, Zc) −0.0149 0.0078 0.0578 0.0207 0.0063 0.0010

FAWE—π̂ (δ, X) −0.0144 0.0084 0.0857 0.0235 0.0065 0.0003

FAWE—π̂ (δ, X, Zc) −0.0150 0.0080 0.0597 0.0233 0.0063 0.0002

Thymic or nonthymic leukemia death

Complete-case −0.0144 0.0075 0.0561 0.0107 0.0061 0.0781

SWE—π̂(δ, X) −0.0137 0.0086 0.1090 0.0230 0.0074 0.0018

SWE—π̂(δ, X, Zc) −0.0131 0.0084 0.1170 0.0233 0.0070 0.0009

FAWE—π̂ (δ, X) −0.0148 0.0088 0.0925 0.0262 0.0073 0.0003

FAWE—π̂ (δ, X, Zc) −0.0152 0.0085 0.0743 0.0259 0.0072 0.0003

π̂ was obtained on the variables in the bracket using the Nadaraya–Watson estimator with uniform kernel
and bandwidth h = 4σWn−1/3

analysis, the SWEs and the kernel-assisted FAWEs. To estimate the selection proba-
bilities for the SWEs and the FAWEs, we applied the Nadaraya–Watson estimator in
(5) with bandwidth h = 4σWn−1/3. Conditional expectations were estimated by the
Nadaraya–Watson estimator (12).

Results in Table 6 show that only the complete-case analysis indicated a significant
association between the Gpd-1 phenotype and the death of thymic leukemia adjusting
for the virus load, while for the death of thymic or nonthymic leukemia, none of the
methods had significant results. For the virus load, allmethods except for the complete-
case analysis resulted in significant associations with the death of thymic leukemia and
with the death of thymic or nonthymic leukemia, respectively. The FAWEs sometimes
have slightly smaller SE than the SWEs, especially for the coefficient of the observed
covariate, virus load. This trend is consistent with what we have seen in the simulation
results.

4 Discussion

Missing covariates complicate analysis of survival data. Inconsistent and inefficient
estimates can be generated by naively discarding subjects withmissing covariates. The
additive hazards model is a useful alternative to the commonly used Cox PH model,
especially when the primary interest is to estimate the difference in disease risk for
the covariates or when the proportional hazards assumption is violated. Assuming
the missingness is MAR, we proposed the SWEs and kernel-assisted FAWEs for the
additive hazards model. By using the nonparametric smoothing techniques, the pro-
posed SWEs and FAWEs are robust against model misspecifications for the selection
probability and the conditional expectation of missing covariates, which is an advan-
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tage over the existing methods in the literature. The proposed weighted estimators are
consistent and asymptotically normal and can improve the efficiency of the estimates
from the SWEwith trueπ as well as from the complete-data analysis. All the weighted
estimators possess an explicit expression, an advantage of using the additive hazards
model over the Cox PH model.

The proposed SWEs and FAWEs expand the SWE of Kulich and Lin (2000) for the
case–cohort studies (Prentice 1986) to general missing-data mechanisms. The asymp-
totic distribution theory of the SWEs with nonparametric π̂ suggests that the more
variables are used in obtaining π̂ , themore efficiencymay be gained potentially. So the
SWEwith π̂(X, δ, Zc) has the best efficiency among all the SWEs. Although the SWE
with π̂(X, δ, Zc) has the same asymptotic distribution as the kernel-assisted FAWEs,
our simulation studies and the data analysis example suggest that the FAWEs tend to
perform better than the SWE with π̂(X, δ, Zc) when sample sizes are moderate. In
addition, the FAWEs are robust toward misspecifications of the selection probabilities
due to their double-robustness property.

The proposed methods can utilize surrogate variables to predict the missing covari-
ates and the selection probability for increased efficiency. In this case, the surrogate
variables should be considered as a part of the observed data under the MAR and
included as elements in W .

Theseweightedmethods canbe applied to situationswheremissing covariates occur
by happenstance or by design, such as two-phase studies where selection probabilities
are known. For two-phase studies with moderate sample sizes, we suggest the use
of the FAWE with true selection probabilities. When the sample sizes are large and
missingness rates are not extreme, one can employ either the SWEwith π̂(X, δ, Zc) or
the kernel-assisted FAWEwithπ , and the estimators will generate consistent estimates
with similar efficiency.

Supporting information

Additional information for this article is available online. The proofs of the theorems
are in Appendix S1 and the full acknowledgments section of the ADNI study are in
Appendix S2.
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Appendix

The following regularity conditions are needed in the proofs of Theorems 1–4.

(a1) �0(τ ) < ∞.
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(a2) P{Y (τ ) = 1} > 0.
(a3) Z is time-independent and bounded.
(a4) The matrix �A = E[∫ τ

0 {Z − e(t)}⊗2dN (t)] is positive definite.
(a5) W has bounded supportW . There exists a constantπ0 > 0 such thatπ(w) > π0

for w ∈ W .
(a6) The selection probabilityπ(w) has r continuous and bounded partial derivatives

with respect to the continuous components of W a.e.
(a7) The probability density/mass function f (w) of w and the conditional proba-

bility density/mass function fW |V (w) of W |V have r continuous and bounded
partial derivatives with respect to the continuous components of W a.s.

(a8) Conditional distributions fW |V=0(w) and fW |V=1(w) have the same support,
and c(w) = fW |V=0(w)/ fW |V=1(w) is bounded over the support.

(a9) The conditional expectations E(Zk |W = w), E{(Zk)⊗2|W = w}, k = 0, 1,
have r continuous and bounded partial derivativeswith respect to the continuous
components of W a.e.

(a10) nh2d → ∞ and nh2r → 0, as n → ∞.
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